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FOREWORD

This report documents a FORTRAN routine LINOPT for solving linear
programming problems. Upper and lower bounds on all variables are permitted,
and the dual problem includes as a special case linearly-coanstrained minimum

1-norm problems. Basic theory, the algorithm used, input-output procedures

and examples of use are included.
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CHAPTER 1
INTRODUCTION

REPORT ORGANIZATION

This report documents a FORTRAN subroutine (with associated subroutines)
called LINOPT for solving linear programming (LP) problems. It is divided
into several chapters. Following the INTRODUCTION is a chapter (PROBLEM
FORMAT AND PROGRAM USE) explaining the types of problems which can be solved
by LINOPT, some manipulations on them and correspondences with program
notation. A chapter (SUPPORT FUNCTIONS AND DUALITY IN LINEAR PROGRAMMING)
discusses some of the duality concepts behind the formulation and solution of
LP problems. The next chapter, DUAL SIMPLEX METHOD gives some information
about the algorithm used in the program. EXAMPLES and a LISTING follow.

PROBLEM FORMULATION ¢

A rather abstract formulation of an LP problem in the following: Let X be
a real vector space paired with M under the bilinear form (inner product)
(u,x) — u.x, ueM, xeX, and let Y4, £ = 1,.....m be similarly
paired with Ay, £ = 1,..., m. Given ueM, closed convex sets Cy in Yj, and
linear transformations A4, : X+¥4, i = 1,...,m,

maximize HeX
subject to Ayx ¢ Ci, i=l,...,m.

This problem in convex programming has the following as its dual problem:

m
minimizez oC{(Ag)
1=1

o,
subject to z Ay = w0
, i=]

where °C1 is the support function of the set C; — see Chapter 3 for

more on support functions. For explanatory purposes it is sufficient to take
each Ay equal to the identity, so that Y{ = X, Ay = M, i = 1,...,m. Chapter 3
treats this simplified version.

The program LINOPT is set up to handle constraints of the form ui.x € Cy
where uy ¢ M and C; {s a nonempty closed interval. If some Cy is a
bounded interval of nonzero length, the dual problem has a nonlinear
objective; it 1is, however, convex and piecewise linear. The details are given
in Chapter 2, where it is shown that the general form of the dual objective is
the sum of two terms, one linear, and one a weighted 2 norm.
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The algorithm used in the program is a form of the revised dual simplex
algorithm modified to handle upper and lower bound constraints. The inverse
matrix used is a row-basis inverse. Accordingly, the algorithm is more
efficient on problems with many constraints. (On problems with fewer
dependent variables than independent variables, a column-basis inverse would
be smaller.) Use of a row basis has definite advantages in modifying a
problem and then reoptimizing.

No new theory is involved in this program. The dual simplex algorithm can
be found in standard linear programming texts. 1,2 Insisting that all
variables in the primal problem have both upper and lower bounds makes it
trivial to find a dual-feasible point to start the algorithm, and because of
the resulting asymmetry between primal and dual problems, allows us to handle
directly (via the dual problem) certain piecewise linear convex minimization
problems.

The results from convex analysis used in Chapter 3 can be found in greater
generalization and detail in Rockafellar's book.3

1Hadley, G., Linear Programming, Addison-Wesley, Reading, 1962.

"23immonard, M., Linear Programming, Prentice-Hall, Englewood Cliffs, 1966.

3Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton,
1970.
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CHAPTER 2
PROBLEM FORMAT AND PROGRAM USE

INTRODUCTION

LINOPT is programmed to solve a problem maximizing (or minimizing) a linear

function subject to upper and lower bounds on linear constraint functions.
(The bounds are equal for an equality constraint.) The dual to this problem
has a piecewise linear objective function and linear equality constraints.
Missing bounds in the primal problem correspond to sign constraints on the
dual variables. Such missing bounds can be handled by introducing a penalty
function for the sign constraint violations in the dual problem. An even
simpler and more direct interpretation is that the missing bounds can be
replaced by bounds so large in magnitude that they are effectively infinite.

PRIMAL PROBLEM

Maximize xy, subject to b, < x < by, k=1,..., min, where k, ¢
{1,...., on} §9d x 0

n
X = a,, x,, i=1l,....,m.
n+i Zj=1 ij 73

The objective variable Xk, can be expressed by:
Z )
Xkn = Cs Xi,
ko ey 373

Skoj if kg < m,

3k6-n,j if kg > n.
The same data also define the dual problem.

where

c

DUAL PROBLEM

m+n -
Minimizez 1 max {upby, ugbp} subject to

m
uj + - Ui ali:j = Cj’ j=1,...,n.
The dual objective has another form which is more likely to be recognized in

an application:

mén min min [/
E max {uypby, uyb,} = E Ek + b | oyt E b = By
k=1 kel \ —— k=1 \T 2

7

[Uk!
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Thus the dual objective contains a linear term and a weighted £;-norm term.

The dual variable uy can be thought of as a Lagrange multiplier for the
constraint xg €{bx, bkl.

MISSING BOUNDS; SIGN CONSTRAINTS

The following table (TABLE 1) shows how to prepare primal problems with
missing constraints or dual problems with sign constraints. M is a very large
positive number. (The default value supplied by the program is 10100,)

The first line of the table gives the standard two-sided constraint assumed

by the program. The other lines give the modifications for unilateral and no
constraints. In the modified problem uy is always unconstrained in sign. The
dual objective picks up the original linear term when the sign constraint is
satisfied, and a penalty term when the sign constraint is violated.

When the program gives an optimal solution in which x¢ = + M for some k,
the original problem has an unbounded solution. If it has a finite solution,
the program will yield it, and it will not depend on M (unless M has been set
so small that it interferes with the "legitimate' constraints). The
calculations are arranged so that roundoff errors due to the disparity in
magnitude between M and the original data do not propagate from iteration to
iteration, and appear within an iteration only if some xg = + M.

The objective variable xig, is also formally a constrained variable,
although generally the constraint will be -M <xy4M, i.e. essentially no
constraint at all. Tighter bounds may at times be useful. The constraint
bk, <xx <M can be used to answer the question: Is max Xkge bkg? If
the answer to this question is negative, the constraints are inconsistent. As
soon as the inconsistency is detected, the program returns to the calling
program without going on to calculate the solution completely.
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PROGRAM NOTATION

Correspondence between the notation herein and the notation of LINOPT is

given in Table 2.
TABLE 2 CORRESPONDING VARIABLES

This TR LINOPT
m M
n N
kp I0BJ
Xic X(K)
ug U(K)
by BL(K)
by BU(K)
ayy A(ROW(I) + COL(J))
M BIGM

The FORTRAN variable BIGM is included in the program for the user's
convenience. It supplies a default value (which can be changed) for filling in
the missing bounds. (The user must fill in all bounds, since there is no
provision for keeping track of missing bounds cotherwise.)

CONSTRAINT COEFFICIENT STORAGE

The constraint coefficients are referenced in an unusual but flexible way.
Row and column pointer arrays ROW and COL are used to index an array A. The
FORTRAN standard for array storage is by columns (ay), agy, a3j,..-,
ayp, a7, a32,..., etc.) Suppose that we have a matrix A stored in an
array dimensioned 10 x 20 and we wish to study a problem whose constraint
coefficients form a submatrix of A, as in

¥5 < | 357 a53 as59 27
y8 agy ag3 a89 z3
29
We can set x) = 27, X2 = 23, X3 = 2g, X4 = V5, X5 = Vg,

ROW(1) = 5, ROW(2) = 8,
COL(1) = 60, COL(2) = 20, coL(3) = 80.

COL(J) is set to the number of elements in the array preceeding the coefficient
column for X(J)— 6 x 10 for the 7th column, 2 x 10 for the 3rd and 8 x 10 for
the 9th. ROW(I) then picks off the appropriate entry in the column. We can
even introduce (by using the LOCF function)columns extraneous to the array
storing A. Consider the modified example:
b5y
[bsz»] "

ys| = [as7 as3 27
y8 agy agy 23

10
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in which x3 = w4. COL(3) is set by
COL(3) = LOCF (Bl,4)) =~ LOCF (A(1,1)).

The columns of B must be structured the same way as the columns of A for this
procedure to work. Instead of having a coefficient matrix stored in the array
in the usual way we could have it transposed, perhaps as a result of starting
with a dual problem. This corresponds to storage by rows (not the FORTRAN
standard). A little reflection indicates that defining ROW the way COL is
defined above, and COL the way ROW is defined handles this storage arrangement.
Further examples are given in the program comments.

INPUT AND OUTPUT

Input and output variables are clearly indicated in the program comments.
(The program is listed In the section titled "LISTINGS".) Arrays are passed as
formal parameters. Scalers are passed by using a labelled common block /XXXLP/,
which must accordingly be a common block in the calling program.

ROUNDOFF CONTROL

In the program there are three input variables which can be used to control
roundoff error accummulations. EPS is a tolerance used in checking constraint
violations. H is also used to zero out coefficients in the tableau which have
small nonzero values (typically for a CDC 60-bit machine, on the order of

1071%4) which ought to vanish. Finally constraint violations less than EPS are
eliminated from the optimal solution before returning. For small problems EPS =
0 is generally all right.

The other roundoff - controlling variables are invert (a logical variable)
and ITMAX. When INVERT is TRUE the inverse matrix corresponding to the current
key K is calculated. ITMAX is a limit on the number of iterations. When this
limit is reached control is returned to the calling LINOPT again with INVERT =
TRUE., one may control the building of roundoff error in the inverse matrix
(which otherwise is updated by column operations every iteration). (For small
problems this may not be necessary.)

After obtaining a solution (or after any return from an initial call to
LINOPT) INVERT can be set to FALSE for another call to LINOPT. Certain
modifications to the problem data are permissible at such a time - constraints
may be added, for example. These modifications are any for which the inverse
matrix would be unchanged, and include the following (Note: primary indices:
K(1),+..,K(N); secondary K(N + 1),...,K(N + M) - see Chapter 4.)

ADDING CONSTRAINTS

M is increased, new elements to ROW are added to point to the new constraint
coefficients (which, if not already defined should be stored appropriately), and
new bounds added to BL and BU.

11

f
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MODIFYING CONSTRAINTS

Bounds for any secondary variable can be changed. Inactive bounds for
primary variables can be changed. Active bounds for primary variables can be
changed, provided the corresponding solution is also changed; e.g. if X(K(1)) =
BU(K(1)) and BU(K(l)) is changed, X(K(1)) must be changed in the same way-
Constraint coefficients for dependent variables X(N + 1),..., X(N + M) which are
also secondary variables can be changed; (these may include the objective
variable) or such constraints can be dropped, with appropriate changes to ROW,
M, BL and BU. (If the constraint corresponding to ROW(I) is dropped, the
simplest way to make these changes is to set ROW(I) = ROW(M), BL(N + I) = BL(N +
M), BU(N + I) = BL(N + M), and then M = M - 1, so that the indexing for X(N + M)
is changed to X(N + I)).

Of course, when LINOPT is recalled with INVERT = TRUE, any problem changes
whatsoever are permissible.

12
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CHAPTER 3

SUPPORT FUNCTIONS AND DUALITY IN LINEAR PROGRAMMING

The support function O¢c of a convex set C in X is a convex function defined on
M by:

Jc = (W) = Supgec H°X (1)
The support function of the empty set is - ® everywhere. For nonempty C,

dc (#) > — = and may take the value + «; in Rockafellar's terminology, it is a
proper convex function®.

Many of the formulas of convex analysis can be simplified when they are
restricted to convex polyhedra and convex polyhedral functions. One such is
found in Corollary 16.4.1 of Rockafellar's book3, from part of which we can
derive the following: Let C1,..., Cy be closed convex polyhedra with nonempty
intersection C (also a convex polyhedron). Then :

m
min) __. Ocy (Wy)
ooy » | P2 % 2

subject to m Hy = n

i=1
(The general version of the corollary is required if C is empty.) Rockafellar

terms the operation in (2) "infimal convolution", since for m = 2,
cclncz(u) = infy (oc (A) + UCZ(urk)) a form reminiscent of integral convolutions.

Formulas (1) and (2) express Oc (u) as the common optimal value of a pair of dual
convex programming problems:

Primal Problem:
Maximize u-x
subject to x € Cy, i=1,....,m.

Dual problem:

Mmmizez : ™9y (uy)
i-]. i

subject toE o Uy = M. j

i=]

Ibid, p. 24,
Ibid, p. 146.

13
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Three solution cases arise:

1. 9¢ (u) = - = C is empty. The dual objective is unbounded below on
the dual constraint set. :

2, - ©<0C () <+ oo C is not empty. The optimal value, viz ¢ (u), is
attained in both problems.

3. 9C () = + C is not empty. The primal objective is unbounded
above on the primal constraint set. The dual objective
is + = everywhere on the dual constraint set, (i.e.
OCy (uy) <=, £ =1,...,m=>Z481 uy ¥ u.

Suppose that OC (u) is finite, and let x* solve the primal, Wi*, i=1,...,m, the
dual. Then

OC (u) = uex* (primal optimality)
= (Zifl Hy*) e x* (dual constraint)
= 2131 (ug* - x*)
iy 9¢y (uyg* (primal constraints)
= 0c (n) (dual optimality) 1
It follows that -
pyx - oxx = o, (ug%), is1,...,m, (3)

or that u;* supports C4 at x*: ui* is an outer normal to Cy at x*. The formula
is one way of expressing complementary slackness, since if x* € int Cy then uj* = 0,
while

Figure 1 ILLUSTRATION OF DUAL OPTIMAL SOLUTIONS. (u3* = 0)

14
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if ugy* = 0, then the constraint x € C; can be dropped without altering the
solution. The set of constraints for which Lj* # 0 are active (binding)at the
optimum. (See Figure 1). There may be multiple solutions, each with a
different set of active constraints.

The usefulness of (2) hinges on picking the constraint sets Cy, i=l,...,m, to
be simple enough to permit easy evaluation of their support functions. Any convex
polyhedron can be expressed as the intersection of half-spaces, and any half-space
can be defined by a linear inequality. Let H: = {x: u.x f_b}, where p # 0. Then

ub if v = up and u > 0,
M= 1t otherwise.

In terms entirely of hyperplane constraints the primal and dual problems become
Primal problem:

Maximize p-x
subject to py - x < by, i=l,...,m
Dual problem:

m
_Minimize) = ug by
1=1

subject toz o ug Wy = U,
=1y >0, 1=1,...,m.

The sign constraints on uy avoid infinite values of the dual obijective and keep
it linear so that both problems consist of optimizing linear functionals subject
to linear constraints. Alternatively we could omit the sign constraints and keep
the formulation in terms of support functions. This pair of problems also
illustrates the more general duality relationship cited in the INTRODUCTION. Let
Agy: X»R be defined by A4X: = py - X. Then Ay*: R*M and Aj*u = uuy. Moreover,

uby if u > 0,

% m’bi](u) lewifuc<o
Thus the problems are expressible as:
Primal problem:
Maximize u-x
subject to Ay x € (-, by], i=1,...,m
Dual problem:
Minimizez: " 9 (<o, by ] (uy)

i=1

2::‘“ *
subject to 1 Ay ug = u

15
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We may have two-sided constraints such as

B<wx<b
(where b f'S) defining a set S in X, which can be replaced by the pair of
constraints
H*X f_ -’
- < b
since

max {ug, ub} if v = ul,

aglv) = 3+ o otherwise,

and max {ub, ub} is nonlinear in u (unless b = b), the dual of a problem with
two-sided constraints is nonlinear. Of course it 1is easy to relate the two-sided
and one-sided versions by using (2). Thus if u is the dual variable for the
constraint b < u.x < b, ut for u-x < b and u~ for -u.-x < -b,

then u=ut -y %)
while if b # b either ut or u~ vanishes (at the solution), so that
ut = max {u,0}, - v~ = min {u,0}. (5)

When b = b, only the difference u = ut - u~ is determined. An alternate
viewpoint in this case is that u is the dual variable for the linear equality
constraint u-x = b.

The pivoting operations of the dual simplex method can be thought of as
substituting one hyperplane bounding a half-space for another, and consequently
are better suited for the formulation in terms of one-sided constraints. The
relations (4) and (5) and some sign bookkeeping then make it easy to apply the
method to two-sided constraints. Explanations of the method without the sign
manipulations are more transparent. Accordingly in the next section only one-sided
constraints are considered.

16
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CHAPTER 4
DUAL SIMPLEX METHOD

In the previous sect'sn no particular coordinates were used on X. Most LP
problems encountered are expressed in terms of coordinates with respect to some
particular basis for X, the coordinates then forming a set of independent
variables. (as indicated previously, LINOPT assumes such a formulation.) Thus,
with one-sided constraints, we get a pair of problems like the following, in
which we assume that the n independent variables X5, jeJ are included in the m+n
constrained variables xy, keK; i.e. JCK.

Primal problem:
Maximize xy: = ZjEJ ¢y x4
subject to xy: = ZjeJ ayy Xy < by, kek.
(Note that agy = § 1y for kel.)
Dual problem: -
Minimize L . . uy by
subject to I keK Yk 8kj = €4, jeJ
ug > 0, kek.

Note that the n equations relating the dual variables uy, keK can be written
explicitly for uy:
{

z {eK~J Ui aij + uj = Cj

Thus in the dual problem, uy, iek~J, are independent and u;, j€J, are dependent.
Given some other subset J' of K for which Xy, jeJ', are linearly independent,
we can transform the constraint relations so that xj, jeJ' are the independent
variables through which ‘the primal problem is phrased. Given such as index set
J' we can define a corresponding basic solution. For J the definition of a
basic solution is obtained by setting the independent variables x;, jeJ, and
uy, i€KVWJ, to their bounds and satisfying the constraint relations among the
variables; x| and uy are the values of xy, ug at the basic solution.

§j = bj, jeJ (primary primal variables)
R =L jeg 3y by, 1€k~ (secondary primal variables)
Gj = ¢y, jeJ (secondary dual variables)

rimary dual variables)
Gy = 0, 1eK~J (p Y

17
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The terms.primary and secondary have been introduced instead of independent and
dependent because one may wish to refer to the primary variables of the problem
as initially formulated as the independent variables. The split between primary
and secondary depends on the set J and changes with it. The secondary primal
indices are usually called basic indices in linear programming texts, since they
correspond to the indices for a column basis for the constraint matrix. This
terminology is a little inappropriate here, since LINOPT makes use of a row
basis corresponding to the complementary set of indices - the dual basic indices
in the usual description. The use of "basic" in this sense is avoided here to
prevent confusion.

Furthermore, in a problem with two-sided coastraints the basic indices refer
to the indexing of the equivalent one-sided problem, not the indexing of the
two-sided problems, so that the basic variables for J would be xi and -xj
for keK~J and either xj or -xj (but not both) for jeJ. Alternatively we may
retain the "primary/secondary” notation and supplement it with some way of
indicating whether a primary variable is at its upper or its lower bound. (The
program simply checks the solution value against the bounding values.

In a basic solution the primary variables satisfy the constraints placed on
them if all primal variables satisfy the constraints, the basic solution and J
are primal-feasible. If the dual coanstraints are satisfied, the basic solution
is dual-feasible. A basic solution which is both primal- and dual-feasible is
optimal. At a basic solution both primal and dual objective variables have the
value szJ Cjbj. The criterion for dual feasibility is simply that
cj >0, jed.

The transformation of the constraint coefficients accompanying a change from
one set of primary variables to another can be performed explicitly when needed,
or it can be expressed in terms of a nonsingular matrix relating the variables.

There are two ways of doing this. Let x;, jeJ and x;v, j' €J' be two
sets of primary primal variables. Set I = K~J, I' =K~J', and let xj be a
column vector whose entries are X3 j&J, etc. Using matrix notation the two
ways can be described as follows:

l. Solution for xp

X = Axg (Ais m x n)
Rearrange columns to give:

B xg* = R xj'
with B a nonsingular m x m submatrix of [I -A]. Then xy' = B=1r XJe
The columns making up B are a basis for the space spanned by the columns of
(1 -A]
Applied to the dual:

UtA + Uy =¢C

Ur'S + UyD = C . -
Uge sp~17+ Uy = ¢, where ¢ = ¢ D~L.
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The rows of D form a basis for the space spaanned by the rows of[?].

2. Solution for xj and substitution:

&I A
= XJ
X; 1

Rearrange rows to give:

Xt S sp~1
= X3= Xy
Xyt D 1

N

(S and D are the same as above. B~IR = sp~1.)
For the dual:

{U[ ugl T UI[I[ -A]] + [? cl |
Upr Uyl = YgIB =R + Cyr Cy
[UII Ujl] = U['[I -B-lR] + (0 T

where C = cyr + Cp* B-1R and is the same as before. The inverse matrix

B-l is the product of elementary row operations; D~! is the product of
elementary column operations. Either one may be used to keep track of
changes. LINOPT uses p-l and generates coefficients and solutions from the
original coastraint coefficients by:

X1 A
= p~l X
X3 I

When a basic solution is changed, D~! is updated by column operations. (We
have ignored x5: assumme that OcK so that ¢ is a row of[A]
I

The dual simplex algorithm works with dual-feasible basic solutions. Given a
set J defining primary primal variables, J is altered by adding an index not in
J and dropping an index in J: a secondary variable replaces a primary
variable. The resulting changes in the constraint coefficieats can be
accomplished by Gauss-Jordan pivoting. The indices entering and leaving J are
chosen in such a way that dual-feasibility is maintained and the objective
function value does not increase, Proof of convergence can be found in any
linear programming text.® The procedure is:

1. TIdentify violated constraints: 1' = {ick~J: X >bj.

2. T1f 1' is empty, stop: basic solution is optimal.

3. Pick (by some heuristic) keTl’'.

4. 1dentify constraints which can be dropped without being violated when Xy
is set to by: J': ={jJ: ayj>ol

5. 1f J' is empty, stop: constraints are inconsistent.

O For example, Hadley, op. cit, or Simmonard, op. cit.
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6. Identify subset of J' corresponding to constraints for which dual feasibility {is
maintained when dropped: J" = {jeJ': cj/akj =jg§n (ci/agy)}.

7. Pick (while applying anticycling criterion, if desired) feJ".

8. Update solution: J: = JU{k} ~ {2}. Update inverse D-1 by column
operations. Calculate new basic solution.

9. Go to 1.

The coefficients ayy and cy are those corresponding to the current index set
J, not the original one in” terms of which the problem is phrased, and are
calculated by post-multiplying an original constraint matrix row (or objective
row) by D=1,

In the program the heuristic used in step 3 1is to pick the most violated
constraint. In step 7 a tie for % is hroken randomly, a procedure which prevents
cycling almost surely.
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CHAPTER 5

EXAMPLES

TEST PROGRAM

A small test program to run the following examples is listed in Figure 2.
The lines between the call to LINOPT and the call to TABLO merely do some
cosmetic surgery on the output, replacing quantities near M in magnitude
(actually those >vM) by + R (machine infinities). Three examples are given,
with NAMELIST inputs and the outputs from the program. Note that in all three,
ROW and COL are defined to correspond to storage by rows, and the columns of the
array A contain the rows of the constraint coefficient matrix.

EXAMPLE 1

This example is essentially the problem discussed in Section 1-3 of
Hadley/, with slightly modified coefficients.

Maximize Xg: = 5.0 Xy + 7.6 X3 + 8.0 X3 + 4.0 %X, R

sub ject to X1 >0, X250, X3>0, ¥4>0,

Xg5: 1.5 X + 1.2 xz + 2.4 x3 + 1.2 xqi 2100,
x6: = Ll.0 x1 + 4.5 x9 + 1.0 x3 + 3.0 x4 < 8000,

x7: = 105 xl + 3-0 xz + 316 x3 + 1-0 x‘0< 5000.

7 0p. cit
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NAMELIST INPUT:

$IN
IOBJ = 8
M= 4,
N =4,
MIN = ,FALSE.,
INVERT = .TRUE.,
ITMAX = 1000,
EPS = 0.,
ROW = 0, 10, 20, 30,
coL =1, 2, 3, 4,
A(l, 1) = 1.5, 1.2,
A(l, 2) = 1.0, 4.5,
A(1, 3) = 1.5, 3.0,
! A(l, 4) = 5.0, 7.6,
BL = 4%0,, 4*-1,E100,
BU = 4%1_E100, 2100., 8000., 5000., 1.EL00,
‘ K=1,2,3,4,5,6,7,8,
i X = 4%0,,
$END

2
.0
.0

0

WWr- N
« s e
OO &
v
£ W o
o v v

(Since the objective coefficients cy are all nonzero for the initial tableau,
it is not really necessary to preset x], X7, x3 and x4, as Example 2 will show).

Output:
TABLEAU
I BL(1) x(1) BU(I) T(I, 1) T(1, 3) T(1, 5) T(I, 7)
1 0.000 0.000 R 1.000 0.000 0.000 0.000
2 0.000 1625.000 R -.125 -.800 -.417 .500
3 0.000 0.000 R 0.000 1.000 0.000 0.000
4 0.000 125.000 R ~1.125 -1.200 1.250 -.500
5 -R  2100.000 2100.000 0.000 . 000 1.000 -.000
6 -R  7687.500 8000.000 ~2.938 -6.200 1.875 .750
7 -R  5000.000 5000.000 -.000 .000 .000 1.000
8 -R 12850.000 R -.450 -2.880 1.833 1.800

The objective variable, x(8), is to be maximized. ITER = 10, IERR = 0.

The tableau gives information about the primary and secondary variables at the
final iteration. The primary variables are x), x3, x5 and x7. The rows of the
tableau give the coefficients of the variables expressed in terms of the
primary variables. Thus, x4 =-1.125 x) -1.2 x3 + 1.125 x5 ~.5 x4.

The dual variables are not printed explicitly but the nonzero ones can be
obtained from the objective row: u; = -.450, uy = -2.880, ug = 1,833,

uy = 1,800. (For a minimization problem, these should be negated.)




Minimize

EXAMPLE 2
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This problem also comes from Hadleys.

subject to

Input:

$IN

10BJ = 4,
M =6,

N =3,

CERER.

X4t

-
-

MIN = . TRUE.,
INVERT = . TRUE.,

I™AX
EPS =

Row = o0, 10, 20, 30, 40, 50,

= 1000,
o-,

coL =1, 2, 3,

3x,

=2Xy + 4X3

x1 20, x >0, x320,
= 3x1 + 5%y + 4x327,
= 6X] + X9 + 3x3 >4,
= 7% - 2% - x3 <10,
= x| ~2%) + 5%X3 >3,

= 4%+ TXp - 2%3 59,

(1,

1)
1.000
-.333
-.333
2.333
-.000
4.667
8.000

.000

A(lL, 1) = 3., =-2., 4.,

A(l, 2) = 3., 5., 4.,

A(l, 3) = 6., L., 3.,

A(l, &4) = 7., -2., -1.,

A(l, 5) = 1., ~2., 5.,

A(1, 6) = 4., 7., =2.,

BL = 3*0., ~1.E100, 7., 4., -1.E100,

BU = 6*1,E100, 10., 2*1.E100,

K=1,2,3,4,5,6,7,8,9,
$END
Output:
1 BL(I) X(1) BU(T)
1 0.000 0.000 R
2 0.000 R R
3 0.000 R R
4 -R -R R
5 7.000 R R
6 4.000 R R
7 -R -R 10.000
8 3.000 3.000 R
9 2.000 R R

THE OBJECTIVE VARIABLE, X(

ITER = 3 1ERR =0

8. T1Ibid., p. 267.

2.333

23

It is his Problem 8-5.

3., 2.,

TABLEAU

' 1.000
.152

.061

-.061
1.000

.333

-.364
0.000

.939

4), 18 TO BE MINIMIZED.

™, 8)
0.000
-.121

.152
.848
+000
.333
.091
1.000
-1.152
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This problem has an unbounded solution: X5 = + ® and the objective value
is - o,

EXAMPLE 3
This example illustrates the solution of a dual problem.
Mi.nimi.zezlgo_3 luk‘
sub ject toZ§_3 ug = 1,
19‘,3 kug = 1.
(The indexing starts at 3 for convenience.) Since there is no unit matrix in

the constraint coefficient matrix, we add artificial variables uj) and uj,
which must vanish at the solution:

9
up + Zk=3uk =1,
9
up + kue = 1.
2 % 24K
Noting that |Uy| = max {-u), u,} , we can transform to the primal problen:
Maximize xjg: = x] + x)

subject to ~12x;%1 , i=3, ..., 9, where

X3: = xl + 3X2, K:’: = Xl + QXZ
XS: = Xl + sz, X6; = Xl + 6X2
X1 = X o+ ¥, ¥g: = Xp + 89
Xg: = X1 + 9%X,,

The variables x] and xp, dual to artificial variables, are not constrained
directly.

Iaput:

$IN
I10BJ = 10,
M=38,
N =2,
MIN = ,FALSE.,
INVERT = .TRUE.,
IT™MAX = 1000,
EPS = 0.,
ROW = 0, 10, 20, 30, 40, 50, 60, 70,
coL =1, 2,
a(t, 1) = 1., 3.,
A(l, 2) = 1., 4.,
A(l, 3) = 1., 5.,
A(l, 4) = 1., 6.,
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i a(l, 5) = 1., 7.,
" a(l, 6) = 1., 8.,
3 a(l, 7) = 1., 9.,
- al, 8 = 1., L.,

5 BL = 2%-1.E100, 7%*-1., ~1.EL00,
. BU = 2*1.g100, 7%-1., L1.ELOO.
K =1,2,3,46,5,6,7,8,9,10,
X = 2*1.E100,

$END
Output:
1 BL(I) x(1) BU(I) (L, 3) ™I, 9)
1 -R 2.000 R 1.500 ~.500
4 2 -R -.333 R -.167 .167
g 3  -1.000 1.000 1.000 1.000 ~.000
, 4 -=1.000 .667  1.000 .833 .167
1 5 =1.000 «333  1.000 .667 .333
¢ 6 -1.000 .000 1.000 .500 .500
f 7  -1.000 -.333  1.000 .333 .667
i 8 -1.000 ~.667 1.000 .167 .833
i 9 -1.000 -1.000 1.000 .000 1.000
10 -R 1.667 R 1.333 -.333
f_' ‘-.,_._'I'he solution is obtained from row 10: wu3 = 1.333, ug = =.333, U4,...,

ug =0 . The minimal value is 1.667. (Obviously, the exact solution has uj3
= 4/3, ug = -1/3.)

R s

i
]
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CHAPTER 6
LISTING

SURROUTINE LINOPT(A,ROM,COL,BL,BU,H,X,0,E,5CR) LINGPT 2
¢ LINE 2
(mm e e o a e a e oA S e oo ey —mmmm e m e m A m e m e ——— LINE 3
£ LINE 3
¢ LINZAR PROGRANMING BY THE DUAL SIMPLEX ALGORITHS LINOPT 2
¢ LINOFT 5
¢ LINOPT 6
0 PROBLEN~- LINOPT 7
£ LINOPT 8
0 NININIZE OR WAXINIZE X{I0BJ)) SUBJECT T0 LIHGRT 9
e LINOPT 10
¢ X(N#ID = SUHEJ = 1,...,8)  AROWCDI*COL(D)) & X{dD, LINaRT 1
e D2 f,eee i, LINOPT 12
¢ LINGPT 13 t
C BLOJ) WLE. X(J) JLE. BULJI, J = 1,..., N+, NPT 13
c LINDPT 15+
cC emmeemeeanes LIKG?T te
c LINGFT 17
D FURTHER DOCHMENTATIDN AND EXARFLES OF USE CAN 32 FOUND IN~- LINGFT 18
¢ LINGPT 19
¢ NSUC TR 80-413, LINOFT, A FURTRAN ROUTING FOR SOLVING LIzQFT 20
¢ LINEAR FROGRSAATNG FROBLENS, BY J.N, MINGATZ. LINGPT 21
c LINGPT 22
S LINGFT 23
< LINGPT 24
e ARRAYS ARE PASSED AS FORNAL PARANETERS, SINFLE UARIMELES a5 LINDPT 25
C ELENINTS OF THE COMMON BLOCK /XANLF/. LINGFT 2%
c LINOFT 27
C INPUTS-=THE FOLLOWING VARISBLES AND ARRAYS WUST BE DEFINED O LINGRT 28
¢ ENTRY LIH0PT 29
c LINgPT 30
¢ 1034 INPEX OF TRE DBJECTIVE UARIABLE. (INTEGER) LINGRT 31
c (NOTE THAT X(I08J) 15 ALS0 COWSIDERED AS LINOPT 32
c A CONSTRAINED VARIABLE.) LINGFT 33
c LINGFT 34
c ] HUNSER OF DEPENIENT UARIAELES. (IRTEGER) LINGET 33
c M NUSRER OF INDEPENZENT VARIABLES. (INTEGER) LINGRT 36
¢ LINDRT 37
L P JTRUS. FOR AINIFIZATION, (LEGICAL) LINAPT s
N FALSE. FOA nAXIniZation. LIM9RT 39
e LINGET 20

27
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¢ INVERT LTRUE. IF THEZ INVERSE MATRIX E WO ITAl) Linde? N
C IS 70 32 CALCULATED. Linge?! 32
C LFALSE. IF E IS5 ALREADY SET TO 743 IHWERST FOR LingeT 237
C THE BASIS DEFINED BY K, (FOR RZIPTINIZATION, LlgeT 43
C INVERT SHOULD BE L FALSE, UHLESS REINYERSIOW LINDZT 45
C IS DESIREDR.) LIngeT 3%
c LIRO?T 47
s ITnaf AAKIaUd NURBER UF ITERATIDNG ALLCLED, (13TEGLR) wIinugry <3
c CONTROL IS RETURNED TO Tnt CALLINS LIND®T <7
c PROGRA® AFTER ITMAX ITERATIONS. LINGPT I
c LINOPT 3
c EFPS ZERO TOLERANCE. CONSTRAINT VIQLATIONS (RiEAL) LINGPT 32
c OR TABLEAU ENTRIES .LE. EP3 IN aadNITUDE LInGpPy B
c ARE TREATED AS ZERQ. LINOPT 54
c LInQPT 33
c A ARRAY CONTAINING THZ COEFFICIENT HATRIX. (REALY LINDPT 20
c ROU ROU INDEX ARRAY. CINTEGER) LINORY 37
c coL COLUMN INDEX ARRAY. (INTEGER) LINOPT 23
C THE COcFFICIENT OF X{4J) IN THE EQUATION LINGPT 5%4
c FOR X(N+I) IS ACROGU(II+COL(I)). LINOPT 49
C EITHER (CASE 1) LINGFT ol
C ONE HAS VECTORS AROW1,...,ARGHH UITH LINOPT 2
C ARDBI(COL(J)) THE COEFFICIENT OF X{(J) LiNgerT a3
C IN THE EQUATION FOR X{N*tI), I3 WHICH CASE LINOPT 24
€ ROW(IY = LOCF(AROWI) - LQCF(a), 1 = tye..,id, LINGPT 4% (
C OR (CaASE 20 LING2T Y
£ ONE HAS VECTORS ACOLt,...,nCCLH NITH LINDPT o7
N ACOLJ{RDUIT))» THE COEFFICIENT OF X(JD LIMOPT 53
c IN THE EQUATION FIR  X(N+I[), [. WHICH CASE LInoeT o7
C EOL{J) = LOCF(RCCLUY - LOCFLRA), J = 1,...,id, LINGPT 73
c (E.G. IF A IS DIMENSICNED FOR M RDH3 LINGRT B
c AND THE COEFFICIENT MATRIX 15 STORED INM LINQPT 72
C THE FIRST ® ROUWUS AND o CEQLudn> OF A (JASE 23, LINGET 73
C ROWCIY) =1, I = 1,..,.,H, LINGPT 74
C COLCS) = (J=-1)»N8, J = 1,...,N, LINGPT ]
€ UHILE 1F THE COEFFICIENT 4ATRIX IS STORED LIRGRT 7
c TRAMSPOSED IN THE FIRST N ROWS Al W COLUANS LinneT T
c (CASE 1, LInDeY 73
C ROWCI) = (I-1)%H} I=1,...,d, LInOrT °
c CoLedy = J, J o= 1,...,N. LIwdpPt ad
C ROU AND CDL MAY BE FERMUTED IN ANY CONVZHIgHNT LInGeEY 3
C WAY.) LINGFT 32
C LiNaey a3
C &L ARRAY OF LOUWER BOUNDS. (REAL) LINQPT 54
C 3U ARRAYT OF URFER BOUNDS. (REAa) Lisley 53
c LINQPT 84
C K BASIC S0LUTION KEY. (INTEGER) LIngeT 37
c K, IN COnJUNCTION WITH X, SPECIFIC? A LIogeT 72
C PARTICULAR R45IC SOLLTIOM. THE =Z25a71aM8 LInG27 33
[ RELATING A(M+¢1), I =1,...,0 T3 LIwdey R
p *dry b=t e M O0dE TONSTREALST ZRUATIOND '

i Cart 3E SOLYZD FOR VARIOUI CCAET.ATI83 L7 =

28
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2 M VARIABLES (SZCOMDARY VARIABLISY I TEansS LIsarT 93
c 0F THE REHﬁIﬁING f VARIASLES (FRInafY CInGET 74
C YARIASLES). H, A PERRUTATION UF \l....,ﬁ+ﬁ), LiNnPT 93
C SrECIrI:S SUCH & FAR ’TIQN INTD FIIAARY Anl L1i0RT 2%
C SECONDARYT YARIABLES., R{1),...,ni8) ARE THE LINDFT 97
C INWICQS OF THE PRINART VARIABLES. K(N+1),..., LiNGPT 58
c K{N+#) ARE THE IHDICES OF THE SCCONDARY LINOPT 59
T UARIABLES. FOR THT DUAL YARIABLIS utJY, LisarT 159
N J = 1,..., 848, PRINARY AND SECONDARY INDICES LINgPT 161
c SWITCH ROLES, U(KIN#1)),...,U{NiNeH)) BEING LINOPT 102
c PRIMARY. A BASIC SOLUTION IS SPECIFIED BY LIRGPT 103
¢ SETVING EACH PRINAL PRIAARY VARIABLE T2 LINOPT 104
C EITHER OF ITS BOUNDS AND EACH DUAL PRIMARY LINOPT 103
c VARIABLE TO ZERG. THI INPUT VALUES OF THE LINGPT 196
C PRIMAL PRIMARY VARIARZLES ARE SUITCNED TD THE LINDPT 197
c OFPDSITE BOUND IF MECESSSRY IN CRDER TO CRTATE LINQET 103
c A DUAL-FEASIBLE BASIC SOLUTION. LINOPT 149
c LINDPT 110
c X PRI#AL SOLUTION ARRAY. (REAL) LINGPT tit
c X(K¢JY) MUST BE SET 7O ZITHER BL{K(D) CR LINOPT 12
c BUIKCI)), J = 1,.0.,0, THES‘ ARE CEFAULT LINDPY 113
I VALUES TO BE USED WHEN & VANISHING U(N(J)) LINGPT 114
c HAKES  X(X(J)) TIMDETZXHINATE IN SETTING UP LINDPY 115
c A DUAL-FEASIHLE SQLUTION. LINOPT 116
g LINDPT 17 (
C GUTFYTS--THE FOLLOUING VARIABLES AND ARRAYS ARE DEFINED L1897T 113
: C OR REGEFINED ON EXIT LINOPT 119
. L LINOPT 129
£ ITER MUNBER GF ITERATIONS SINCE THE LasT (IHTEGER) LIabPT 124
c INVERSION. LI#nPT el
L LINGPT 123
C IERK ERROR FLAG. (INTESER) LINDPY 124
g IERR = 0-~-OPTINUN FOUND, LINDPT 125
£ 1--INCONSISTENT CONSTRAINTS. LINGPT 125
L 2--ITERATION LINIT REACHED. LINGPT 127
C 3--INVERSION FAILED (RAD INITIAL BASIS). LINOFT 123
C LINDPT 129
C K RASIC SOLUTION KEY, (INTEGER) LINOPT 139
C SET FOR THE CURRENT BaSIS. ' LINOPT 131
c LINOPT 132
) X FRIMAL SOLUTIDNS ARRATY, {(REAL) LINOPT 133
c LINOPT 134
c U DUAL SOLUTINN ARRAY. {REAL) LINGFT 133
e U{J) IS5 THE DUAL VARIABLE (LAGRANGE LINGPT 134
C HULTIPLIER) FOR THE CONSTRAINTS 0N X{J). LINOFT 137
C 1T 1S POSITIVE IF THE UPPER BOUND I5 ALTIVE, LINOPT 133
C NEGATIVE TF THE LOWER BOUND I3 ACTIVE. LINGFT 137
C LINgeT 139
c £ IHVERSE MATRIX ARRAY, {RTALY LInGsT T3y
g (DY = SUN (J = 1,..,,8) END.00 ¢ XGEGDND, LInePT 142
b [ 2 1eaaa,n. LINGE T 13,
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C LInGey Ve
C SC# (ALIAS ARDW IN SUBRDUTINES) SCi=Tln ARAAL. Linory HES]
c LINGeT 143
c  eessceccw--- LInGrT 137
C LIndeT 132
c AINIMUA DECLARED ARRAY SIZES-- LInQeT 147
C LIHOPT 159
D A Nk M LINDPT 13!
c RON ] LINOPT 152
c CaL N LINDFT 135
£ BL K+ N LINOPT 134
c 3U H+ N LInGET 153
C K H+ N LI#0PT 150
C X A+ N LINGPT 157
c U #+ N LINOFT 153
c E NsN LINDPT 159
C SCR N Lingey 140
c LINGPT 141
c  eeeeaseaca-- LINOPT 1462
C LInNQPT 153
c SUSROUTINE TABLO (G.V.) PRINTS THE FULL EXPLICIT TABLEAU. LINDPT 164
[ IT IS NOT CALLED THROUGH LINOPT AND MUST BE CALLED SEFARATELY. LINOPT 133
c ’ LINE 2
L D e et L e L P LIng 3
c CIng 4 {
DINEHSION BL(1), BUCH), K(1), X{1), L(1), SCR(1) LINDST 157
G LINOFT 143
codMoN /XXXLF/ 1I08J, M, M, HIM, INVERT, ITdAX, zPS, ITER, IEARR FAKALF/ 2
COWMDN /XXXLP/ NP1, NPM, IFIV, JPIV, HEGY FAXALFS 3
CONADN /XXXLF/ BIGH FAXALF/ 4
LOGICAL WIN, INVERT, NEBY /XXALPY 3
C LINE 2
W e Y e n e E L D DL DL Lt kL LD L LR L e b LINE 3
c LINE 3
D THE VARIABRLE BIGH REFRESENTS A VERY LARGE NL#33R8. THE DEFAULT LINOFT 171
c VALUE IS 1.E100. THE USER MAY RESET THIS VALUZ IF 50 LZSIRED. LINCRT iT?
< BIGH OR -BIGR MAY BE USED TO FILL IN HISSING LFPPER OR LOWER LIGORT 173
C ROUNDS. LINaeT 174
C LINOPT i73
BATA BIGN /1.E100/ LINORT iTa
c LiNE 2
R e e e e ettt e bl e b LinNg 3
C LINE i
NFl = N + 1 LIhgeT 178
NPH = N + Hf LGt s
IF (.NGT. INVERT) GO 70 10 L1HOPT 133
CALL SETINV(A,RQW,COL,K,E,5CR) LInary 133
IF (IERR.EQ.3) RETURN LindeT 132
19 ConTivyg . LINORT 133
CALL BETROW(A,S0Y,C0L,E,1084,5CK) LINCPT e
po 39 4 =1, 8 Liag®y 3T
Fios KOdy (IR Icht s
30




©

20

30
10
50

b0

&6

IF (ala)y SCReD) =
iR} = SCRUDD
IF (UiRd))
NEGATIVE
CONTINUE
X{kd) = BL{RD
G0 TO 39
FaSITivVE
CONTINUE
X{KJ) = BU(KS)
CONTINUE
CONTINUE
63 J = NP1, NPH
UCK(J)) = 0.
CONTINUE

20, 40,
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=SCR(J)

30

CALL PSOL{A,ROH,COL,K,%,E)
CALL DSIMP(a,ROW,COL,BL,BU,X,X,U,E,5CR)

IF

109

110 CON
REY
END

(IERK.NE.0) 60 TG

119

ROGUND X-VALUES WITHIN EPS OF BOUMDS

DO 100 I =1, HPH

IF (ABS(X(I)-BL(I}).LE.EPS) X(I)
IF (ABRS(X(D)-BUCI)).LE.EPSY X(D)

CONTINGE
TINUE
URN

[ S (]

31

3L{D)
BU(L)

.

'LIA!'JF‘T
LLgrT
LI&GRT
LIx02T
LIsorT
LINGPT
LIAOPT
L1AGPT
LINOPT
LINOPT
LINQPT
LINgPT
LINGFT
LINQPT
LINGPT
LINGPT
LINOPT
LINOPTY
LINOPT
LINOPT
LINOPT
LINOPY
LINOPT
LINDRT
LINOPT
LINGRT

(v

et - me i ee —a
Bt BRIV P B B Y]
Li 8 ~— D w U Ny

194
193
196
197
193
199
269
29t
292
203
204
203
208
207
208
209
210
200

212
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SUBKDUTINE DSIAP(A,ROW,COL,BL,%U,K,X,U,E,AR0H) IEIitE o
c LINE z
R T T e EEE R LINE 3
» LINE 3
C DUAL SINPLEX ALGORITHM DSINF 3
I LIing 2
L et L LR e e L L L P P LR LD EE LSt LInE 3
o LTHE :
DINENSION BLC1), BUCI), K(1), X{1), U(1), ARDW(1) USTitP 5
C BSINP 7
COMNON /XXXLP/ 10BJ, M, N, MIN, INVERT, ITHaX, £PS, ITER, IERR FAXALP/ 2
COMMON /XXXLP/ NP1, NPH, IPIV, JPIV, HEGY JRXXLP/ 3
COMMON /XXXLP/ BIGM JXXXLP/ 4
LOGICAL HIN, INVERT, NEGV IXXXLP/ 5
C A LINE 2
[ommmemmm e m o mcccmemmsmmeeaee—smem oo emmee e seme—ee—e——ece—soem e LINE 3 ;
c LINE 4 ?
IERR = 2 DS1iP 19
£ UHEN ITMAX.LT.1 THE LOOP 15 PARTIALLY EXECUTED = - BS1HP 1"
DO 100 I = 1, ITHAX DSIidp 12
CALL PIVROW(BL,BU,K,X) LSINP 13
IF (IPIV.6T.0) 60 TO 10 DSINP 14
c NO PIVOT ROW INDICATES THAT X IS DPTIMAL DS IKF {3
IERR = 0 LS IHP 16
RETURN DSIAP 17 !
10 CONTINUE BSINP 18
KROW = X(IPIV) DSINP 19
CALL GETROW(A,ROW,COL,E,KROU,ARON) DSIKP 20
CaLL PIVCOL(BL,BU,K,X,U,AR0) DSINF 2
IF (JPIV.GT.0) GO 70 40 DS I 22
C NO PIVOT CCLUMN INDICATES THAT THE CONSTRAINTS DSINF 23
€ ARE INCONSISTENT DS LitP 24
IERR = | D5 1w 23
RETURN IS Iife 26
40  CONTINUE DSINP 27
IF (ITHAX.LT.1) RETURN BSIHP 8
c NEY SOLUTION KEY p51MP 27
K(LPIV) = K(JPIV) : B5IiP 5
KCJPIV) = KROW BSIiP 31
CALL NEWINV(E,AROW) BSIiiP 32
C NEW DUAL SOLUTION D51i4P 13
CALL GZTROUCA,ROW,COL,E,10KJ,AROW) DSIHP 34
B0 4 =31, N D317 335
IF (HIN) AROW(J) = -ARDUID) DSILitF 34
UCK(J)) = AROW(J) BSIH? 37
70 SONTINUE BSIMP 33
UGKCTIPIVI) = 0, PSIi? 33 :
¢ NEW PRINAL SOLUTION B3Iitp a0
X(KROU) = BU(KROW) 33092 1
IS (NEGV) X(KEOW) = BLI{KROW) MESRE 2
CALL PSOLVA,RIU,SOL, K, X,E) £31a7 4
ITIR = ITER + | 55 1n 21
128 IONTINJE 03147 23
32
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N B51ip 5
RETURN 151140 17
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SUBRQUTING PIVROWIBL,RY,K,X)

DIMENSION BL(1), BU(1}, K(1), X(1)

COWKON 7XXXLP/ 10BJ, M, N, MIN, INVZRT, 1THAX, =PS, ITER, lERE
CONNON /XXXLP/ NPI, NPM, IPIV, JPIV, HEGV

CONNGN /XXXLF/ BIGM

LOGICAL RIN, INVERT, NEGV

iPl¥Y = 0
IF (NPH.LT.NP1) RETURN
VioL = 0.
DO S0 II = NP, WPH
I = K(ID
CHECK CONSTRAINTS ON X(I)
B = {1y - BLAD)
iF (D.GE.-EPS) GO 7O 10
p=-0
IF (VIOL.GT.D) 60 TO 40
VigL = b
IPIV = II
NEGV = .TRUE.
60 T0 40
CONTINUE
=X - BHD?
IF (D.LE.EPS) GO TO 30
IF (VIOL.GT.0) GO 70 40

@« o &

VIOL = D
PV = 11
NEGY =.FALSE.
CONTINLE
CONTINUE
CONTINUE
RETURN
ENT

PIRGY 2
LIne z
LINg K
Liile 3
P1V0W 3
LIsg 2
LIRE 3
LIuz 3
PIUROH 3
PIVRIY 2
IXLALP/ 2
JENALR/ 3
{XXXLP/ P
JXAALF/ 3
LIng p
LINE 3
LINE 4
PIVROU 12
PIVEOU i1
PIVRDU 12
PIVROY 13
PIVROM 14
PIVROU 13
PIVEDU 14
TR0 17
FLYRGE i3
PIVROY H
PIYRIN 29
PLYROY 24
FIVEGY 22
PIVRDW 23
PLIROW ]
PIVRON a3
FiJROU 23
PINROY 37
FIVROW 23
PIvROU 27
FINROW 30
LUK} 31
FIVRDY 32
PIVRDUY 33
FIVRGY 32
PIVROW 33
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SUBXOUTINE PIVCOL(EL,EU,K,X,U,ARGY) PIyoL 2
c L1AE 2
[ wm~m == mmmmmm oo mecoeeemeem e —am e LIxE 3
) ¢ LIME p
C  PIVDT COLUMN SELECTIOM FINCOL 3
C LINE 2
[memmmmmmmmmmmmme—cmemmeeoceemeeascsecasccesesame-eems=cesec—mesemamm= LINE 3
C LINE 3
DINENSION BL(1), BUCIY, K1), X(1), U(1), ARDH(D) PIVCOL 8
c PIVCOL 7
COMHON /XXXLF/ 10BJ, H, N. MIN, INVERT, ITHAX, EPS, ITER, IERR JXXXLP/ 2
CONHON /XXXLP/ NP1, NPH, IPIV, JPIV, NEGY JXXILES 3
CONNON /XXXLP/ BIGH JXRALP/ 4
LOGICAL NIN, INVERT, NEGY /XAXLP/ 5
c LINE 2
P e mm e = e e e LINE 3

¢ LINE 4 j
IV =0 PIVCAL 10
W= BIGH PIVCOL t
D3OI =1, N , PIVCOL 12
! J = KU PIVCIL 13
AA = AROW(JJ) PIVCOL 4
IF (NEGY) AA = -Ad PIVEOL 15
IF (AA.GE.O. .AND. X(J}.EQ.BL(J)) GO TO 20 PTUCOL 14
IF (AA.LE.O. .AND. X(J).EG.BUCJ)) GO TO 20 PIVEOL 7

R = UCJ)/0A FIVCOL 13 {
: IF (R.GT.W) GO TO 10 PIVCOL 19
IF (R.Z0.4 .AND. RANF(A).GT.0.5) 80 70 10 PIVCOL 29
PRIV = JJ PIVCOL 21
W=k PIVCOL 22
10 COHTIHUE PIVCOL 23
20 CONTINUE PIVCOL 23
30 CONTINUE PIVEOL 25
RETURN PIVEOL 25
' . END PIVCOL 27
35
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"SUSROUTINE GETROUCA,ROU,COL,E,KRON,ARDH) ' 5

ETRIU -
c LINe z
T et LINE 3
I LIug 3
c GENERATION OF CONSTRAINT COEFFICIENTS FOR THE CURRENT %ASIS GETRON 3
c LIHE 2
S et ik LINE 3
N LINE 4

DINENSION A1), ROW(1), COL{1), E(1), AROW(1) BETROU 3
INTEGER ROM, COL GETROW 7
c GETROU 3
COMHON /XXXLP/ IOBJ, M, N, HIN, INVERT, ITHAX, £PS, ITER, IERR FXXRLP/? 2
COMMON /XXXLP/ NP1, NFM, IPIV, JPIV, NEGV 7AXALP/ 3
CONHOX /XXXLP/ BIGH IAXZLPS 3
LOGICAL #IN, INVERT, NEGV FARALF/ 3

¢ LINE 2 :

S e LINE 3 ;
C LINE )
IF (KROW.GT.N) 60 TD 20 GETROW R
C ORIGINAL INDEPENDENT VARIABLE, GET ROW KROW OF THE INVERSE. GETRCW 12
JJ =0 GETROY 13
DO 10 J =1, N GETROY id
AROUCD) = E(KROW+JD) BETROW i35
IF (ABS(AROV(J)).LE.EPS) ARON(J) = 0. GETROY 14

; JJ = JJ+ ¥ GETROY 17 !

; 10 CONTINGE GETROY i3
; 60 TO 50 GETROM 19
20 CONTINUE GETROY 0
c ORIGINAL DEPENDENT VARISBLE. GETRCH 1
c AULTIPLY ORISINAL ROW BY THE INVERSE. GITROY o2
KK = RON(KRON-N) GETRW ek
Jd =0 BETARIY !
Do 40 J =1, N GETRGY 25
AROM(J) = D. GETROW 25
PO 30 I =1, N GETROU zr
ARON{J) = ARDW(J) + A(KK+COL(I))#E(I+J)) GETROU o3
30 CONTINUE GETROU ?
IF (ABS(ARUN(J)) LE.EPS) AROU(J) = 0. GETROW I
JI = JJ o+ A GETROU 31
30 CONTINUE GETROY 2
50 CONTINUE GETROY 33
RETURN GETIvGY 34
- END GETRDY 33
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SURROUTINE FSOL(A&,ROY,COL,R,X,E) PSOL 2
c LINE 2
R et i Lidz 3
c LINE K
¢ FPRIMAL SOLUTION P30l 4
c LIME 2
e Rt e LINE 3
C LINE 3
DINENSION AC1), ROW(I), COLC1), K(1), X(1), E{D) PSOL b
INTEGER ROW, COL PSOL 7

c PSOL 3 i

COMMON /XXXLP/ 10BJ, M, N, MIN, INVERT, ITHAX, EPS, ITER, IZRR IXXXL2 s 2 !
COMMON /XXXLP/ NP1, NPH, IPIV, JPIV, NEGV IXXALE/ 3
COMMON /XXXLP/ BIGH IXXALP/ 4

LOGICAL HIM, INVERT, NEGY IXXALP/ 5 ]

c LINE ol i
[ i et L LT LR RE SRS LINE 3
c LINE 4
DD 30 I = NP1, NPH PSOL 11
KI = K{D PSOL 12
; IF (KI.6T.N) GO TO 20 PSOL 13
{ X(KI) = 0. PSOL 14
JJ =0 PSGCL 15
DO 10 J =1, N PSOL 16

! RKD) = X(KI) + E(RI+JJI) * X(#i{d)) PSOL 17 |

f Jd = JJ + N PSOL 18
190 CONTINUE PSOL 19
20 . CONTINUE PSOL b
30 CONTINUE PSOL 2
D0 60 1 = NP1, HPH , P50L 2
KI = KiI) P50 23
IF (KI.LE.N) 6O TO S0 PSOL 24
X{KI) = 0. PSOL 25
KK = ROU(KI-N) PSOL 25
, DO 40 J =1, N PSOL. 27
% (KDY = XC(KI) + A(KK+COL(J)) * X(J) PSOL 23
! 40 CONTINUE P50L 29
50 CONTINUE PSoL 30
40 CONTINUE PSOL 31
RETURN PSOL 32

END PSOL 33
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SUIRBUTINE SETINV(A,KON,COL,K,Z,ARDY) SETIx 2
I LINE 2
T T i TR LIiE 3
c Ling 3
C INITIAL TNVERSE SETINY 3
I LINE 2
e T et LINE 3
C LINE 3
DIRENSION K(t), E(1), AROM(1) SETINY 6
t SETINY 7
CONMMON /XXXLP/ 10BJ, M, N, MIN, INVERT, ITNAX, €PS, ITER, IZRR IXXXLP/ 2 ‘
COMNON /XXXLP/ HP1, NPM, IPIV, JPIV, NEGV IXXALP/ 3 ;
CONAON /XXXLP/ RIGH XXXLP/ 3 i
LOGICAL MIN, INVERT, NEGV 7XXxLe/ < :
c LINE 2 i
e e Tt L L LR PR LR SR LINE 3 1
c LINE ]
C SET E TO THE IBENTITY SETInY 10
Ji =9 SETINY 11
DO 20 J =4, N SETINV 12
DO 10 I =1, N SETIHV 13
E{1+J)) = 0. SETIiY 14
10 CONTINUE SETLV i
ECJ+dd) = 1. SETIN 1§
JJ = JJ o+ N SETINY i7 !
20 CONTINUE SETINV 15 :
c GENERATE INITIAL IMVERSE SETIHV 7.
0 30 J =1, H SETINY 2 1
KCJ) = =K¢D) SETINY 2
30 CONTINL SETINY 2z
PO 90 JJ =1, M SETINY 23
DO 30 J =1, N SETLY 24
IF (K{J).LT.0) 60 TO 50 SETIaV 25
30 CONTINUE SETINY 28
50 CONTINUE SETIY 27
KROW = -K(J) SETINY 23
CALL GETROW(A,ROW,COL,E,KRDW,ARCH) SETINY 9
ROUKAX = 0. : SETIN 39
po70L =1, N SETINY 31
TEST = ABS(ARDW(L)) SETIHV K
IF (K(L).GT.0 .OR. TEST.LT.ROWKAX) GO T2 30 SETIiV 33
ROWNAX = TEST SETINV 33
JPIV = L SETINY 35
60 CONTINUE SETINY 34
=79 CONTINUE SETIW 37
IF (XDYMAX.GT.0.) GO 7O 30 . SETIMY 33
IERR = 3 STTINV 3? .
RETURN SETIAY 49
30 CONTLHUE SETL 3




L
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K{d) = R(JPIV)
K(JPIY) = KROW
CALL NEWINV(E,AROW)
90 CONTINUE
ITER = 0
RETURN
TNT
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Sciluy
SETIa
SETINY
SETINY
SETINY
SETINY

S3ITIaY

2
43
44
45
46
37
13




NSWC TR 80-413

SUBROUTINE NEWINV(E,ARDY) NEJIHY 2
LINE 2
f o o e e e e LiNg 3
c LIHE 3
£ INVERSE UPDATE BY COLUNN OPERATIONS NEWIHY 4
c LINE 2
e e L L e Rt Ling 3
C LINE 4
DIHENSION E(1), AROM(1) NELINV 5
c NEWINY 7
COMMON /XXXLP/ 10BJ, H, N, MIN, INVERT, ITHAX, EPS, ITER, IZRR JXXXLP/ 2
CONMON /XXXLP/ NP1, NPM, IPIV, JPIV, NEGY JXA3LP/ 3
COHMON /XXXLP/ BIGH JXXXLP/ 3
LOGICAL MIN, INVERT, NEGY JXXALP/ 5
c LINE 2
Cmmmmm e e e e e e e e m oo mmmc oo LINE 3
c LINE 4
JIPTV = (JPIV-1)#N NEWINY 10
10201 =1, N NEWINY 1
EPIV = E(I+JJPIV)/AROW(IPIV) NEWINY 12
=0 NEWINV 13
L0 10 J =1, N . NEWINY 14 |

EC(I+JJ) = E{I+JJ) - EPIV+AROU(J) NEWINY is |

JJ= JJ+ M NEWTNY 14 j

10 CONTINUE HEWINY 17 ;
ECI+JIPIV) = EPIV , NEWINY 18
20 CONTINUE NEYINY 19
RETURN NEWINY 2

END NENINY 21
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SUBRJUTINE TaAaLO(A,RO4,COL,BL,RY,H,X,E,SCR,RO%D; TAELY 2

c Lise 2
I it e inint by Ling 3
C LINE 4
C TABLEAU FRINTOUT TABLO )
c TABLO 5
C KDXD IS AN ARRAY OF LENGTH AT LEAST N USED rOR REQRDSRING TaBL0 é
C (1), ... niit) IN ASCTHDING URDER. TA3LY 7
c SEE LINOPT FOR DESCRIPTIONS OF THE OTHER PARAMETERS. TABLO ]
c TABLO 9
c LINOPT NUST HAVE BEEN CALLED BEFORE CALLING TAsLA. TABLD 19

C LINE 2
D e ettt e bbbt b bbb Dbt LINE 3
L * LINE 4

DIMENSION ACt), RGU(1}, COL(1), BL(1), BU(D), A(1), X(1), E(}) TABLO 12
DIMENSION SCR{t}, KORD(1) TABLOD 13
INTEGER RO, COL TABLO 14

C TABLO 13
COMMON /XXXLP/ 10BJ, M, N, MIN, INVERT, ITHAX, EPS, ITER, IERR JXXXLP/ 2
COMMON /XXXLP/ NP1, NPM, IPIV, JPIV, NEGV JXXXLF/ 3
CONNON 7XXXLP/ BIGH /XXX e/ 4
LOSICAL MIN, INVERT, NEGV /XXXLP/ 5

C LINE 2

I i ettt LINE 3 {

c LINE 4
1 FORNAT CIH1//7T33,¥T A B L E A Ux//71X,s I *,3X,%BL(1)*, TABLD 18

/ X, #X(I)#, 05X, *¥BUCI)*,iX,10A10/(J4X,10410)) TABLO 19

2 FGRMAT (1HO,I3,1X,3F10.3,1X%,10F10,3/(36X%,10F10.3)) TASLO 20

3 FORHAT (2X,#T(I1,*,13,%)%) TABLO 21

4 FORMAT (///1HQ,sTHE QJBJECTIVE VARIABLE, X{(=,I13,*), IS TO BE *,A10) TABLD 22

c LINE 2
R D D e it D ittt bt D LINE 3
C LINE 4
Do 1ig J =1, N TABLG 23
KORD(J) = J TABLOD 2

1190 CONTINUE TABLO 25
po 130 J =1, N TRALO 27
CJNIN = J TABLD 23

BO 120 J4 = J, N TaRLD 29

IF (K(KORDC(JJI)) LT.KCKORD(JAINYY) JIMIN = JJ TA8LD 30

120 CONTINUE TABLD 31
KTEWF = XORD(J) TABLD I

KORD(J? = KORD(JMIN) TABLO 33

KORD{JMIN) = KTENP TABLO 34

130 CONTINUE TABLOD 33
Do 10 J =1, N TARLD 33

ENCODE (10,3,SCR(J)) K{KORD(JI)) TARLD 37

10 CONTINUE TABLD 38
PRINT 1, (5CR(J), J = 1, N) Tazi.0 3?

41
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B3 20 1 =1, NFA
CALL GETRCOY(A,RO%,COL,E,I,SCR)
PRINT 2, 1, BL(I), X(I), BUCI), {SCR(KARD(s)), J =1, V)
CONTINUE

0PT = 1QHNAXIMIZED.

IF (AIN) OPT = 1OHHININIZZD.

PRINT 4, I03J, OPY

RETURN

END

TABLY
TABLD
TABLO
TARLD
TABLD
TABLD
TABLD
TASLO
TABLO
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